27 research outputs found

    How to Incentivize Data-Driven Collaboration Among Competing Parties

    Full text link
    The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, and develop educational strategies. In some settings such as Genome Wide Association Studies or deep learning, sheer size of data seems critical. When data is held distributedly by many parties, they must share it to reap its full benefits. One obstacle to this revolution is the lack of willingness of different parties to share data, due to reasons such as loss of privacy or competitive edge. Cryptographic works address privacy aspects, but shed no light on individual parties' losses/gains when access to data carries tangible rewards. Even if it is clear that better overall conclusions can be drawn from collaboration, are individual collaborators better off by collaborating? Addressing this question is the topic of this paper. * We formalize a model of n-party collaboration for computing functions over private inputs in which participants receive their outputs in sequence, and the order depends on their private inputs. Each output "improves" on preceding outputs according to a score function. * We say a mechanism for collaboration achieves collaborative equilibrium if it ensures higher reward for all participants when collaborating (rather than working alone). We show that in general, computing a collaborative equilibrium is NP-complete, yet we design efficient algorithms to compute it in a range of natural model settings. Our collaboration mechanisms are in the standard model, and thus require a central trusted party; however, we show this assumption is unnecessary under standard cryptographic assumptions. We show how to implement the mechanisms in a decentralized way with new extensions of secure multiparty computation that impose order/timing constraints on output delivery to different players, as well as privacy and correctness

    How to use bitcoin to incentivize correct computations.

    Get PDF
    ABSTRACT We study a model of incentivizing correct computations in a variety of cryptographic tasks. For each of these tasks we propose a formal model and design protocols satisfying our model's constraints in a hybrid model where parties have access to special ideal functionalities that enable monetary transactions. We summarize our results: • Verifiable computation. We consider a setting where a delegator outsources computation to a worker who expects to get paid in return for delivering correct outputs. We design protocols that compile both public and private verification schemes to support incentivizations described above. • Secure computation with restricted leakage. Building on the recent work of Huang et al. (Security and Privacy 2012), we show an efficient secure computation protocol that monetarily penalizes an adversary that attempts to learn one bit of information but gets detected in the process. • Fair secure computation. Inspired by recent work, we consider a model of secure computation where a party that aborts after learning the output is monetarily penalized. We then propose an ideal transaction functionality F ML and show a constant-round realization on the Bitcoin network. Then, in the F ML -hybrid world we design a constant round protocol for secure computation in this model. • Noninteractive bounties. We provide formal definitions and candidate realizations of noninteractive bounty mechanisms on the Bitcoin network which (1) allow a bounty maker to place a bounty for the solution of a hard problem by sending a single message, and (2) allow a bounty collector (unknown at the time of bounty creation) with the solution to claim the bounty, while (3) ensuring that the bounty maker can learn the solution whenever its bounty is collected, and (4) preventing malicious eavesdropping parties from both claiming the bounty as well as learning the solution. All our protocol realizations (except those realizing fair secure computation) rely on a special ideal functionality that is not curPermission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. rently supported in Bitcoin due to limitations imposed on Bitcoin scripts. Motivated by this, we propose validation complexity of a protocol, a formal complexity measure that captures the amount of computational effort required to validate Bitcoin transactions required to implement it in Bitcoin. Our protocols are also designed to take advantage of optimistic scenarios where participating parties behave honestly

    Fast Reed-Solomon Interactive Oracle Proofs of Proximity

    Get PDF
    The family of Reed-Solomon (RS) codes plays a prominent role in the construction of quasilinear probabilistically checkable proofs (PCPs) and interactive oracle proofs (IOPs) with perfect zero knowledge and polylogarithmic verifiers. The large concrete computational complexity required to prove membership in RS codes is one of the biggest obstacles to deploying such PCP/IOP systems in practice. To advance on this problem we present a new interactive oracle proof of proximity (IOPP) for RS codes; we call it the Fast RS IOPP (FRI) because (i) it resembles the ubiquitous Fast Fourier Transform (FFT) and (ii) the arithmetic complexity of its prover is strictly linear and that of the verifier is strictly logarithmic (in comparison, FFT arithmetic complexity is quasi-linear but not strictly linear). Prior RS IOPPs and PCPs of proximity (PCPPs) required super-linear proving time even for polynomially large query complexity. For codes of block-length N, the arithmetic complexity of the (interactive) FRI prover is less than 6 * N, while the (interactive) FRI verifier has arithmetic complexity <= 21 * log N, query complexity 2 * log N and constant soundness - words that are delta-far from the code are rejected with probability min{delta * (1-o(1)),delta_0} where delta_0 is a positive constant that depends mainly on the code rate. The particular combination of query complexity and soundness obtained by FRI is better than that of the quasilinear PCPP of [Ben-Sasson and Sudan, SICOMP 2008], even with the tighter soundness analysis of [Ben-Sasson et al., STOC 2013; ECCC 2016]; consequently, FRI is likely to facilitate better concretely efficient zero knowledge proof and argument systems. Previous concretely efficient PCPPs and IOPPs suffered a constant multiplicative factor loss in soundness with each round of "proof composition" and thus used at most O(log log N) rounds. We show that when delta is smaller than the unique decoding radius of the code, FRI suffers only a negligible additive loss in soundness. This observation allows us to increase the number of "proof composition" rounds to Theta(log N) and thereby reduce prover and verifier running time for fixed soundness

    Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake

    Get PDF
    We propose a new protocol for a cryptocurrency, that builds upon the Bitcoin protocol by combining its Proof of Work component with a Proof of Stake type of system. Our Proof of Activity (PoA) protocol offers good security against possibly practical future attacks on Bitcoin, and has a relatively low penalty in terms of network communication and storage space. We explore various attack scenarios and suggest remedies to potential vulnerabilities of the PoA protocol, as well as evaluate the performance of its core subroutine

    Scalable, transparent, and post-quantum secure computational integrity

    Get PDF
    Human dignity demands that personal information, like medical and forensic data, be hidden from the public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit by parties entrusted with Data, unjustly harming citizens and eroding trust in central institutions. Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to the tension between the ideals of personal privacy and institutional integrity, enforcing the latter in a way that does not compromise the former. Public trust demands transparency from ZK systems, meaning they be set up with no reliance on any trusted party, and have no trapdoors that could be exploited by powerful parties to bear false witness. For ZK systems to be used with Big Data, it is imperative that the public verification process scale sublinearly in data size. Transparent ZK proofs that can be verified exponentially faster than data size were first described in the 1990s but early constructions were impractical, and no ZK system realized thus far in code (including that used by crypto-currencies like Zcash) has achieved both transparency and exponential verification speedup, simultaneously, for general computations. Here we report the first realization of a transparent ZK system (ZK-STARK) in which verification scales exponentially faster than database size, and moreover, this exponential speedup in verification is observed concretely for meaningful and sequential computations, described next. Our system uses several recent advances on interactive oracle proofs (IOP), such as a “fast” (linear time) IOP system for error correcting codes. Our proof-of-concept system allows the Police to prove to the public that the DNA profile of a Presidential Candidate does not appear in the forensic DNA profile database maintained by the Police. The proof, which is generated by the Police, relies on no external trusted party, and reveals no further information about the contents of the database, nor about the candidate’s profile; in particular, no DNA information is disclosed to any party outside the Police. The proof is shorter than the size of the DNA database, and verified faster than the time needed to examine that database naively

    Pisa: Arbitration Outsourcing for State Channels

    Get PDF
    State channels are a leading approach for improving the scalability of blockchains and cryptocurrencies. They allow a group of distrustful parties to optimistically execute an application-defined program amongst themselves, while the blockchain serves as a backstop in case of a dispute or abort. This effectively bypasses the congestion, fees and performance constraints of the underlying blockchain in the typical case. However, state channels introduce a new and undesirable assumption that a party must remain on-line and synchronised with the blockchain at all times to defend against execution fork attacks. An execution fork can revert a state channel’s history, potentially causing financial damage to a party that is innocent except for having crashed. To provide security even to parties that may go off-line for an extended period of time, we present Pisa, a protocol enables such parties to delegate to a third party, called the custodian, to cancel execution forks on their behalf. To evaluate Pisa, we provide a proof-of-concept implementation for a simplified Sprites and we demonstrate that it is cost-efficient to deploy on the Ethereum network
    corecore